26 research outputs found

    Efficient Motion Planning for Deformable Objects with High Degrees of Freedom

    Get PDF
    Many robotics and graphics applications need to be able to plan motions by interacting with complex environmental objects, including solids, sands, plants, and fluids. A key aspect of these deformable objects is that they have high-DOF, which implies that they can move or change shapes in many independent ways subject to physics-based constraints. In these applications, users also impose high-level goals on the movements of high-DOF objects, and planning algorithms need to model their motions and determine the optimal control actions to satisfy the high-level goals. In this thesis, we propose several planning algorithms for high-DOF objects. Our algorithms can improve the scalability considerably and can plan motions for different types of objects, including elastically deformable objects, free-surface flows, and Eulerian fluids. We show that the salient deformations of elastically deformable objects lie in a low-dimensional nonlinear space, i.e., the RS space. By embedding the configuration space in the RS subspace, our optimization-based motion planning algorithm can achieve over two orders of magnitude speedup over prior optimization-based formulations. For free surface flows such as liquids, we utilize features of the planning problems and machine learning techniques to identify low-dimensional latent spaces to accelerate the motion planning computation. For Eulerian fluids without free surfaces, we present a scalable planning algorithm based on novel numerical techniques. We show that the numerical discretization scheme exhibits strong regularity, which allows us to accelerate optimization-based motion planning algorithms using a hierarchical data structure and we can achieve 3-10 times speedup over gradient-based optimization techniques. Finally, for high-DOF objects with many frictional contacts with the environment, we present a contact dynamic model that can handle contacts without expensive combinatorial optimization. We illustrate the benefits of our high-DOF planning algorithms for three applications. First, we can plan contact-rich motion trajectories for general elastically deformable robots. Second, we can achieve real-time performance in terms of planning the motion of a robot arm to transfer the liquids between containers. Finally, our method enables a more intuitive user interface. We allow animation editors to modify animations using an offline motion planner to generate controlled fluid animations.Doctor of Philosoph

    Learning Physically Realizable Skills for Online Packing of General 3D Shapes

    Full text link
    We study the problem of learning online packing skills for irregular 3D shapes, which is arguably the most challenging setting of bin packing problems. The goal is to consecutively move a sequence of 3D objects with arbitrary shapes into a designated container with only partial observations of the object sequence. Meanwhile, we take physical realizability into account, involving physics dynamics and constraints of a placement. The packing policy should understand the 3D geometry of the object to be packed and make effective decisions to accommodate it in the container in a physically realizable way. We propose a Reinforcement Learning (RL) pipeline to learn the policy. The complex irregular geometry and imperfect object placement together lead to huge solution space. Direct training in such space is prohibitively data intensive. We instead propose a theoretically-provable method for candidate action generation to reduce the action space of RL and the learning burden. A parameterized policy is then learned to select the best placement from the candidates. Equipped with an efficient method of asynchronous RL acceleration and a data preparation process of simulation-ready training sequences, a mature packing policy can be trained in a physics-based environment within 48 hours. Through extensive evaluation on a variety of real-life shape datasets and comparisons with state-of-the-art baselines, we demonstrate that our method outperforms the best-performing baseline on all datasets by at least 12.8% in terms of packing utility.Comment: ACM Transactions on Graphics (TOG
    corecore